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This paper presents machine learning based approaches to automate and optimize the
detection of volume loss for the downlink process of telemetry data from the Mars Curiosity
Rover. The Curiosity observes volume loss and data corruption, requiring re-transmits from
the rover and Ground Data System Analysts (GDSA) to monitor the data flow. To resolve
this issue, we created a data pipeline to accumulate data from various data sources in the
downlink process and detect where the data is missed. In this paper, we benchmarked different
methodologies based on the accuracy and excitability of them to identify whether a downlink
data that is received to the ground system is complete or incomplete. Our results show that
machine learning methods can improve the performance of the GDSA by 55% while the user
can diagnose why a data is missed and provide explanation for the data accountability problem.

I. Introduction
The Mars Science Lab (MSL) Real-Time Operations team at NASA’s Jet Propulsion Laboratory monitors the

downlink process of telemetry data from the Mars Curiosity Rover [1] back down to Earth. The current MSL downlink
process includes the Mars Orbiters, the Deep Space Network (DSN) [2], JPL Data Control, and MSL Ground Data
Systems. During the transmission of data through this process, time stamps, data volumes, and other metadata are
recorded to make sure the data is being transmitted successfully. However, there are frequent losses in data as it is sent
through these multiple locations, which sometimes require re-transmissions by the rover. There is a need for a better
understanding of the cause of data loss and re-transmission, which can help the Ground Data System Analyst (GDSA)
team better determine the root cause of the issues in the Ground Data System (GDS).

The use of machine learning models has become widespread in analyzing data from space [3–6]; however, the
inability of scientists to understand these models seems problematic [7–10]. There are different interpretation about the
interpretability or explainability of a model. Several works suggest that explainability means trust [11], but it is unclear
what trust is.

Machine Learning approaches are particularly useful, as they can learn abstract and relational features in a dataset.
Although the GDSA team has an expert understanding of the feature space, machine learning algorithms allow the model

∗First, second, and third authors have equal contribution and are listed in alphabetic order.
†This project has been completed while the author was a summer intern at Jet Propulsion Laboratory, California Institute of Technology.
‡This project has been completed while the author was a summer intern at Jet Propulsion Laboratory, California Institute of Technology.

1



to possibly learn other important features that are obscure. Neural networks and random forests can utilize these learned
relations to make accurate predictions on new data. These algorithms can be applied to to determine whether future
Mars Curiosity Rover transmissions are corrupted and require re-transmission based on the recorded historical data.

The paper is organized as follows. Following this introduction, in Section I.A provides some background for the
problem and a short overview of the problem statement. Section II describes the proposed approaches to the data
accountability problem. Then, the adopted algorithms are outlined in more details in Section III and discusses how to
make the methods more explainable for the GDSA analyst. Section IV presents a preliminary analysis of the performance
of the proposed strategy. Finally in Section V, we draw the conclusions.

A. Background
Metadata about each downlink is recorded at each of the data sources in Figure 1. GDSAs access these data sources

and view the metadata to determine if the downlink is being successfully transferred through the downlink process. We
will gather the metadata from these data sources to use in our machine learning algorithms.

Fig. 1 High-level architecture of theMars Science Lab (MSL)Downlink Process, which is the process of sending
telemetry data recorded by the rover back to the MSL team. First, the Curiosity Rover sends data to one of
the Mars Orbiters. Then, the orbiter sends the data to one of the Deep Space Network stations. Afterward, the
data is sent to the Jet Propulsion Laboratory (JPL), where it is received by Data Control and stored as transfer
frames. Finally, theMSL team receives the data and converts the frames into packets and data products. GDSAs
report the total data volume of the downlink in megabits.

Figure 2 shows that the GDS is complex and there are many locations where data can be corrupted or lost. When a
downlink is unsuccessful, it can take several hours to identify the root cause of the issue.

There have been attempts to automate the task of determining whether or not a downlink was successful, but these
methods have proved to be inaccurate [12]. The GDSA Dashboard is the current automated system for identifying
complete and incomplete downlinks. Table 1 shows that the GDSA Dashboard is unreliable, and therefore not suited for
mission operations.

Precision Recall f1-score Support
Incomplete 0.74 0.55 0.63 1141
Complete 0.94 0.97 0.95 7867
Avg/Total 0.91 0.92 0.91 9008

Table 1 Accuracy of the GDSA Dashboard

A recall of 0.55 means that only 55% of incomplete passes are labelled as incomplete. Our machine learning
algorithms hope to improve on these values.
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Fig. 2 Overview of the ground data system architecture []. This figure illustrates the complexity of the data
flow from space to the ground data system.

II. Algorithms Description

A. Supervised Learning Models
As shown in section I.A, the current software unreliably labels passes as successful or unsuccessful. We implemented

various machine learning algorithms to classify each downlink as successful or unsuccessful and improve on GDS
software. Although we may frame labelling the passes as a multi-class classification problem in the future, for now we
only look to implement binary classification for simplification. Furthermore, binary classification is most usable to the
GDSA team because the failed completion of a pass indicates the need for a re-transmission.

1. Neural Networks
We implemented a feed-forward neural network to perform binary classification on our data points. The network

architecture consists of five dense layers with a dropout rate of 0.5 between each of the first four layers. Each hidden
layers used ReLU [13] as its activation function, and sigmoid was applied on the output layer to compute the probability
of success.

The data was broken up into training, validation, and test sets. The split was 70%, 20%, and 10% respectively. When
including categorical one-hot vectors, each data point consisted of 42 features. When omitting categorical features, each
data point contained 18 features. We experimented with both min-max and z-score normalization for the dataset, and we
chose z-score because it led to higher classification accuracy. The network was trained for 400 epochs with a batch size
of 20, with data randomly shuffled between each epoch. A learning rate of 0.0005 and AdamOptimizer were used to
update the model’s weights.

2. Random Forest
A random forest is a collection of decision trees. In each step of building a decision tree, we pick a feature and a real

number R. Then we partition the dataset according to whether a sample’s feature has value less than R. The goal is to
end up with two smaller datasets that have less variance in their labels than the original dataset. Eventually, it is no
longer possible to split the dataset as all samples will have the same label. To build and analyze a decision tree, we
first split the data using 90% of it as a training set and 10% of it as a test set. We used a stratified split to take into
account the class imbalance. The training data is further split into training data and validation data, using 10-fold cross
validation, to find the best parameters for a decision tree classifier using a grid search. The decision tree classifier is
evaluated using the 10% test data that was withheld. Figure 3 shows our most accurate decision tree.

While decision trees are locally accurate and have low bias, they suffer from high variance, which means that they
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Fig. 3 Decision Tree and branches. The above figure shows the complexity of the trees that makes the approach
explainable.

overfit to the training data and are sensitive to small changes in the training data. To reduce the variance, we can
ensemble different decision trees to create a random forest classifier. To build and analyze a random forest, we again
split the data using 90% as a training set and the other 10% as a test set. We used a stratified split to take into account the
class imbalance. The training data is further split into training data and validation data, using 10-fold cross validation,
to find the best parameters for a random forest classifier using a grid search.

B. Model Explainability

1. Adversarial Autoencoders
Adversarial autoencoders are standard encoders that constrain their latent space representation by using adversarial

learning. Recall that autoencoders consist of an encoder and decoder that help project and recreate training examples to
learn the most relevent features of the dataset. The encoder model projects some input x into a latent representation of
that input z. In other words, it learns a function p(z |x) to map data points to latent representations. The decoder tries to
recreate the original data point from this latent variable z. Thus, it learns the function q(x |z).

The adversarial autoencoder uses adversarial learning to constrain the latent space representation z. Adversarial
learning usually consists of a generator and a discriminator models, where the generator takes in randomly sampled
noise to create synthetic data to fool the discriminator. For adversarial autoencoders, both the encoder and the generator
are the same model; the generator learns to fool the discriminator by creating a latent space distribution similar that of
the randomly selected noise. Let the randomly selected probability distribution be r(z) and the latent space distribution
p(z). The generator learns to make p(z) similar to r(z) to maximize the loss of the discriminative model. Therefore, this
architecture imposes a chosen probability distribution on the latent space representation of the autoencoder.

Fig. 4 Illustration of our adversarial autoencoder architecture.

We implemented an Adversarial Autoencoder as illustrated in Figure 4. The encoder had four layers, which reduced
the dimensionality of the input to 16, which was the chosen latent space size. The decoder consisted of four layers
which reconstructed the input data point from the latent space representation. Each layer of the encoder and decoder
uses the ReLU for the activation function, except for the output layer of the decoder. Since the data has been normalized
by z-scoring, the decoder uses tanh as the activation function to make each dimension of the output space from [−1,1].

4



The discriminator has four layers, with the output layer representing the probability that the latent space input data was
from the noise distribution. The discriminator uses ReLU for each layer except the output layer, which uses Sigmoid.

The model was trained for 50 epochs with a batch size of 50. During training, the generator and discriminator were
trained by maximizing their likelihood. The encoder and decoder used the mean squared error on the reconstructed
image as its loss function. The equations are as follows, with x representing the input data point, z representing randomly
selected noise input, and x̂ representing the reconstructed image of x:

Lg(x) = log(1 − D(G(x))) (1a)

Ld(x, z) = log(D(z)) − log(D(G(x))) (1b)

Lae(x, x̂) =
1
n
Σ
n
i=1(xi − x̂i)2 (1c)

where D is the discriminator model and G is the generator model. The learning rates for the encoder, decoder, and
discriminator were 0.0001, 0.01, and 0.01 respectively. The random noise distribution was a Gaussian distribution with
µ = 0.0 and σ = 0.5.The GDSA team informed us that the passes should follow some Gaussian distribution. In other
words, unsuccessful passes would correspond to values with very high z-scores, and successful passes would be close to
the mean value.

2. t-SNE Visualization
The anomalies were visualized using t-Stochastic Neighbor Embedding (t-SNE). t-SNE is a machine learning

algorithm for learning a two-dimensional representation of a dataset to aid in visualization [25]. The anomalies were
visualized using a t-SNE model with a perplexity of 30, a learning rate of 200, and 1000 iterations.

III. Data Description
We accumulated and analyzed historic data from the Curiosity Rover downlinks to best make future predictions on

whether data is being correctly transmitted. We can create a predictive model with this data, which the GDSA team can
use to upgrade current software in the downlink process.

A. Data Pipeline
We collected data from the three different data sources in the downlink process using internal JPL APIs. As shown

in Figure 1, MAROS, Telemetry Data Storage, and the GDS Elastic Search Database are the three different sources that
store the metadata in the downlink process. MAROS receives metadata from the Mars orbiters, TDS from JPL’s ground
data systems, and GDS from the GDSA Team’s data processing. These API’s return data volumes, start and end time of
data transmission, information about orbiter height and location, and other important features.

We created a data processing pipeline that queries each API and for all the data from a given sol. Then we combined
the three datasets into one by matching the downlinks pulled from each of the three sources. Our dataset consists of
downlink data from sol 337 to 2450, sent by six different orbiters. This resulted in 9008 data points, which is too small
of a dataset for complex deep learning models. Therefore, we looked to implement data augmentation to produce more
synthetic data for training our models.

B. Signal Processing
After collecting and merging our data, we implemented signal processing to best compute relevant features from the

dataset. We consulted with multiple Ground Data System Analysts to gain prior knowledge about feature importance.
We computed the time-deltas between the three different data sources and between actual and predicted times for data
arrival. We also calculated the disparities in data volumes between the different locations and between the actual and
predicted volumes. We included both the differences in times and volumes and the raw amounts in our datasets. We
constructed one-hot vectors to represent from which Mars Orbiter the data was transmitted and at which Deep Station
Network station on Earth the data was received and appended those to the data points. We removed Overflight IDs and
Relay Product IDs from the dataset as they are numerical IDs that have no impact on the pass.
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C. Labelling
To Label the dataset, we incorporated both heuristics and hand-labelling from experts on the GDSA team. We

developed two different labelling schemes and combined them with a third set of labels labels that are automatically
generated from GDSA software.

1. Scheme 1: Volume Differences & Re-transmits
Our first labelling scheme utilized two different heuristics to label the dataset. From the computed differences in

data volumes between different locations, the GDSA team set a threshold of 95% data retention for a successful pass.
Also, the team considers all passes that are later re-transmitted as unsuccessful.

2. Scheme 2: TDS Difference
The second labelling scheme compares the data volumes between MAROS, GDS, and TDS. It labels a pass as

successful when the volume difference between any of the two locations is within 1 megabit or the TDS megabits data
volume is larger than the other locations. Once we computed all three sets of labels, we analyzed which datapoints
were labelled differently by any of the schemes. When all three schemes were in agreement, we used that label as our
“ground truth”. A GDSA hand-labelled the remaining datapoints to create “ground truth” labels. We utilized these
labels in our training and testing as well as our analysis on the importance of different features.

IV. Results
The neural network achieved 95-96% accuracy on the training and validation datasets. On the test dataset, the model

achieved 95.3% accuracy. When splitting the test results by orbiter, we saw that there was an accuracy of 95.5% on
MRO over 337 data points, 97.3% on TGO for 38 data points, and 95.6% on ODY for 253 data points. When omitting
the categorical variables in training, the neural network had an accuracy around 95% on the training set and validation
set. The test accuracy was 94.5%, which is slightly worse than when the categorical one-hot vectors were included. The
overall accuracy of the current GDS software is 91% accuracy.

The precision and recall of the neural network are shown in Table ??. When comparing these values to the precision
and recall in Table 1, we can see a significant improvement on the current GDS software.

(a) Incomplete passes. (b) Complete passes. (c) Average of Total.

Fig. 5 Supervised learning results with different methods to identify complete and incomplete downlink pass
for MSL data from Sol 337 to Sol 2450. The training data includes 9009 datapoints, but 1141 are incomplete
and 7867 are complete passes. For the validation of our results we used 114 incomplete, and 787 complete passes
which in total 901 were used for test set. The results from each method is averaged to be comparable with the
GDSA analyst reports. The results from left to right are less explainable.

The random forest classifier is evaluated using the 10% test data that was withheld. The random forest classifier
has 98% accuracy and its precision and recall are reported in Table ??. The recall of the random forest classifier on
incomplete classes is 93%, which dramatically improves upon the 55% recall of the GDSA Dashboard Labeller on
incomplete passes.

We experimented with visualizing the results of training the adversarial autoencoder by displaying the latent space.
Since the latent space consists of 12 dimensions, we used t-SNE to project this into two dimensions to visualize, as shown
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in Figure ??. We were not able to distinguish any particularly useful clustering of data points that distinguish between
the successful and the unsuccessful passes. We believe that this is due to the significant reduction of dimensionality,
which implies large information loss.

The adversarial autoencoder model was trained and used to detect anomalies by selecting a reconstruction loss
threshold. A loss threshold of 0.5 was selected, as shown by the black horizontal line in Figure ??. The average
reconstruction loss on the test data points was 0.38, which is also skewed by the presence of data points with large loss.

The anomalies detected by the adversarial autoencoder and the one-class support vector machine (Figure 6a & 6b)
illustrate multiple different groupings of anomalous data passes in the datasets.

(a) Training data. (b) Test data.

Fig. 6 Latent space representation of the training and test set using adversarial autoencoder.

The areas that the autoencoder deemed anomalous were also considered anomalies by the one-class SVM. The
reconstruction method seems to have learned an accurate reconstruction of the input data, because fewer points have
been classified an anomalies by reconstruction loss threshold. The anomalies detected by both the autoencoder and the
one-class SVM seem to be in distinct groups, which indicates that there are similar classes of anomalies.

The test set anomalies, Figure 6b, also show similar overlapping anomalies from both the AAE and the OC-SVM.
These are contained within the center of the visualization and seem to be in three separate groups.

V. Conclusion and Future Work
In this project, we have been able to apply a variety of machine learning algorithms to analyze real downlinks sent

by the Mars Curiosity Rover. We implemented the following classification algorithms: neural networks, random forests,
and t-Stochastic Neighbor Embedding. The neural network and random forest outperformed the previous automated
methods, and the random forest is currently being used by the MSL Ground Data Systems Analysts to classify new
downlinks. We also implemented the following anomaly detection algorithms: adversarial autoencoders and one-class
support vector machines. The anomalies detected by these algorithms seemed to form distinct groups. In our future
work for this project, we would like to gain a better understanding of these different classes of anomalies, and create
classifiers that can determine which class an anomaly belongs to. Other future work includes identifying more data
sources in the downlink process, and not only identify if there was an issue, but also identify where the issue occurred.
Our goal is to simplify and automate and the job of an expert analyst so that even an untrained team member can respond
to issues in the Ground Data System.
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Appendix: Feature Selection Scheme
We analyzed the different features of our dataset to better understand their importance on successful and unsuccessful

passes. We analyzed the effects of the features on the labels by calculating p-score and variance and using a random
forest algorithm. We then compared those results with GDSA intuition.

Feature Name p-score variance

GDS dataActual 0.08955028 0.001000709
GDS dataPredict 0.055014329 0.015769806

MAROS lander return value 0.204609025 0.013874329
MAROS max elevation 0.117533194 0.067001409

MAROS orbiter return value 0.095045297 0.014373769
MAROS rise elevation 0.177457655 0.046255406
TDS GDS end timedelta -0.086843584 0.000906355
TDS GDS start timedelta -0.1152615 0.000878692

TDS dssId 0 -0.006342271 0.011969046
TDS dssId 14 -0.011767087 0.017558619
TDS dssId 15 -0.010204555 0.012257306
TDS dssId 24 0.01371384 0.027424613
TDS dssId 25 -0.024426821 0.043839993
TDS dssId 26 0.003005157 0.035163367
TDS dssId 34 0.013456289 0.029233313
TDS dssId 35 0.01450093 0.04811124
TDS dssId 36 -0.024681067 0.019407052
TDS dssId 43 0.012240282 0.017558619
TDS dssId 45 -0.033029234 0.016845718
TDS dssId 50 0.071154972 0.24903724
TDS dssId 54 -0.013985144 0.035984398

Feature Name p-score variance

TDS dssId 55 0.014390925 0.056779483
TDS dssId 63 0.024266422 0.021671917
TDS dssId 64 -0.050181142 0.001917114
TDS dssId 65 5.20E-05 0.035710896

TDS insync megabits -0.064221131 0.000861176
TDS insync tf 0 frames -0.035171744 0.003870473
TDS insync tf 32 frames -0.050215818 0.000793424
TDS outasync tf frames -0.05152732 0.000186214

TDS to GDS delta -0.203290347 0.000425259
actual to predict begin timedelta -0.096073465 0.000556861

actual to predict delta -0.12248021 0.000379606
actual to predict end timedelta -0.088029217 0.000552953

orbiter DTE -0.291881369 0.036257726
orbiter MEX -0.058706648 0.002358477
orbiter MRO 0.072998623 0.24926088
orbiter MVN -0.044854024 0.017273589
orbiter ODY 0.095767076 0.240199936
orbiter TGO -0.021657679 0.055608649
orbiter nan -0.14412848 0.009366844

orbiter to TDS delta -0.231028699 0.00052855
rover to orbiter delta -0.271554212 0.003950459

Table 2 Feature Selection Metrics (p-score, variance)

From Table 2, we can see that the data volumes (GDS dataActual, MAROS lander return value, oribter to TDS delta,
and rover to orbiter delta) and time differences (actual to predict begin timedelta, actual to predict end timedelta, and
TDS GDS start timedelta) have the most non-zero correlation coefficient. On the other hand, the categorical one-hot
vectors representing orbiter and station (TDS dssID 55, orbiter TGO, etc.), other than orbiter DTE, were the least
correlated to the data label. The DTE downlinks are sent directly to Earth via the rover’s high-gain antenna, so they do
not appear in MAROS and only contain small amounts of data. Our decision to treat DTE as a separate orbiter was
based on input provided by GDSA experts. The one-hot features also have the least variance, because they can only take
on the discrete values of [0,1]. Since these variables were the least correlated to the labels, we experimented by also
training our neural networks with datasets without the categorical variables.
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